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1. Introduction  

There are many researchers who have studied 

different classes of meromorphic univalent 

functions and meromorphic   valent functions 

involving integral operators like Aouf [1], 

Atshan[2],  Atshan and Kulkarni [3] , 

Ponnusamy [8], Tehranchi and Kulkarni [10] 

and this operator was studied by Urolgaddi and 

Somanatha [11]. Let    denote of the class of 

all meromorphic functions      defined as the 

following : 

       
 

 
 ∑  

 

   

                                           

Which are analytic and univalent in the 

punchred unit disk.  

   {            | |   }    { }. 

Let     denote the subclass of    consist of 

the functions defined as: 

     
 

 
 ∑   

          

 

   

                         

we define the Hadamared product (or 

convolution) of      and      by the form 

          
 

 
  ∑     

 

 

   

           

following the recent work of Liu and Sairastava 

[7] for a function belong to the class    given 

by (1) the Linear operator   is defind by:  

  (    )          

  (    )  
 

 
      ∑         
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          [        ]

  
 

 

 ∑         
 

 

   

 
             

 
              

It is easily verified from (4), that for          

 , 

 [       ]           

                                

A function       defined by (2) belongs to the 

class RZH is said to be in the class RZH 

(𝛼          if and only if satisfies the following 

condition: 

||

𝛼[       ]            [      ]  

    [      ]  [        𝛼       

       𝛼   [       ]  

        [      ]     𝛼       

||

                

Where   𝛼                     

  { }      . 

 

2.  Characterization of the functions 

We now investigate the coefficient 

characterization theorem for the function 

          𝛼        , then by obtaining the 

coefficient boundes . 

Theorem 1  A function f(z) defined by (2) is in 

the class      𝛼          if and only if 

 ∑ [ 
   [      [𝛼         ]   ]  

[𝛼     ]]               | |. (7) 

Proof  Let (7) holds true , for | |    , we have  

|𝛼[      ]            [      ]  

    [      ]  [        𝛼

  ]   | 

 |       𝛼   [      ] 

         [      ]     𝛼

      | 

 |𝛼[      ∑             

 

   

       
   ]

         [    

 ∑               
   ]

 

   

    [   

 ∑         
 ]

 

   

 [           ]   | 

 

 |       𝛼   [    

 ∑          
   ]    

 

   

      [   

 ∑         
 ]

 

   

    𝛼    | 

=  |  𝛼    ∑ 𝛼                
   

      
              ∑     

   

                 
        

∑         
    [        𝛼   ]   

   

       𝛼    ∑ 𝛼           
     

   

         ∑               
     

   

   𝛼       | 
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= |∑ 𝛼                     
     

   

∑                         
   

∑          
    

   | -

|       ∑ 𝛼           
     

   

∑               
    

   | 

= |∑ [𝛼                      
   

   ]         
   ||       ∑ [    

   

     ]         
   |  

= |∑ [      [𝛼           ]   
   

 ]         
   |  |       ∑ [𝛼   

   

   ]           
   |  ∑ [      [  

   

          ]   ]        | |
n-3

 

      | |  +∑ [𝛼     ]        | |
 
   

n-

3
 

For | |=1 , me have  

= ∑ [       [𝛼          ]   ]   
   

[𝛼     ]]              | | 

So , by hypothesis (7), we have      belongs to 

the class      𝛼         . 

Conversely , assume that      is defined by (2) 

belongs to the class      𝛼          , from (6) , 

we have 

||

𝛼[       ]            [      ]  

    [      ]  [        𝛼       

       𝛼   [       ]       

   [      ]     𝛼       

|| 

=|
∑ [      [            ]  ]             

   

       ∑ [      ]             
   

| 

Since     | | , therefor ,we have  

  

{
 
 

 
 ∑

[      [𝛼           ]

  ]         
   

 
   

     | |  ∑
[𝛼     ]

            
 
   

}
 
 

 
 

                      

Now, letting    , thought real values in (8) ,  at 

once obtain (7) and theorem is completely proved . 

In the next theorem, we concentrated on getting 

the growth and distortion theorem for the      to 

belong in the class   𝛼          . 

Theoreme2  Let      belongs to the class 

     𝛼           

 

| |
 

     | || |

          |    |  
 

| |
 

     | || |

             .          

(9) 

This for   | |    

Proof   Let         𝛼         . then  

|    |  |
 

 
 ∑    

 

 

   

|  |
 

 
|  ∑   | |

 

   

 

 |
 

 
|  | |∑   

 

   

 

So, by using Theorem 1 , we have  

∑   
 
    

     | |

            , 

  thus  

|    |  
 

| |
 

     | || |

   𝛼         
  

    Similarly , we have 

 

 

 

 

|    |  
 

| |
 ∑   

 

   

| |  
 

| |
 | |∑   

 

   

  

thus  

|    |  
 

| |
 

     | || |

   𝛼         
 

Theorem 3    
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Let          𝛼          . Then  

 

| | 
 

     | |

          
 |     |

  
 

| | 
 

     | |

          
  

Proof   Let         𝛼          we have 

|     |   
 

| | 
 ∑     

 
    , by using theorm 1 

we have  

∑     

 

   

  
     | |

          
  

So  

|     |   
 

| | 
 

     | |

          
  

Similarly we have  

 

|     |   
 

| | 
 ∑    

 

   

 
 

| | 
 

     | |

          
  

Thus we complete the proof . 

3.  The inclusion relation 

Next, we determine the inclusion relationship 

involving      –neighborhoods. 

Following the earlier works on neighborhoods of 

analytic function by Goodman [5], Ruscheweyh 

[9] and Atshan and Kulkarni [4] , but for 

meromerphic function studied by Lin and 

Srivastava, we define the       -neighborhoods 

of function       , by  

                                      {           
 

 
 ∑    

  
    ,                           (11) 

and 

∑|     |       

 

   

  }                                                

Definition 1  A function        is said to be in 

the class       𝛼             if there exists a 

function           𝛼          such that 

                     |
    

    
  |                  

                                          

Theorm 4  Let          𝛼           and  

 

  

 
    𝛼      

   𝛼               
                                             

Then  

               𝛼         . 

Proof    Let           , then we have from (11) 

that 

∑  |     |    

 

   

 

which implies the coefficient  inequality  

∑|     |       

 

   

  

Also since        𝛼         , we have from 

theorem (1) 

∑   

 

   

  
     | |

          
  

so that  

|
    

    
  |  |

∑         
  

   

 
  ∑      

   

|

 
∑ |     |

 
   

  ∑   
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               | |
    . 

Thus , by Definition 1,       for  , is given 

by (13) .  

This complete the proof. In the next , we 

considered integral transform of functions in the 

class      𝛼          . 

 

Theorem 5  Let the function   given by (2) be in 

the class      𝛼         , then the integral 

operator  

       ∫                      

 

 

                  

in the class      𝛼          

Proof  Let      
 

 
 ∑    

  
    in the class 

     𝛼          .  

Then                                            

       ∫          

 

 

 

  ∫          

 

 

 

                           ∫[
    

 
 ∑    

   ]   

 

   

 

 

 

                    
 

 
 ∑ (

 

     
)   

 

 

   

  

It is easy to show that  

∑

 [[      ][𝛼           ]   ]

 [𝛼      ]      

            | |
  

 

   

              

Since 

       𝛼         , 

   

∑

[[      ][𝛼           ]   ]

 [𝛼      ]      

     | |
  

 

   

    

note that (15) is satisfied 

  

 [[      ][𝛼           ]   

 [       ]      

            | |

 

[[      ][𝛼           ]   

 [       ]      

     | |
  

Since 
 

     
       for all   .  Hence , we 

obtained the required result. 
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